3.1034 \(\int \frac{(a+i a \tan (e+f x))^{9/2}}{(c-i c \tan (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=253 \[ \frac{14 i a^{9/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{5/2} f}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

[Out]

((14*I)*a^(9/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(5/2)*f)
 - (((2*I)/5)*a*(a + I*a*Tan[e + f*x])^(7/2))/(f*(c - I*c*Tan[e + f*x])^(5/2)) + (((14*I)/15)*a^2*(a + I*a*Tan
[e + f*x])^(5/2))/(c*f*(c - I*c*Tan[e + f*x])^(3/2)) - (((14*I)/3)*a^3*(a + I*a*Tan[e + f*x])^(3/2))/(c^2*f*Sq
rt[c - I*c*Tan[e + f*x]]) - ((7*I)*a^4*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(c^3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.215672, antiderivative size = 253, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {3523, 47, 50, 63, 217, 203} \[ \frac{14 i a^{9/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{5/2} f}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(9/2)/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

((14*I)*a^(9/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(5/2)*f)
 - (((2*I)/5)*a*(a + I*a*Tan[e + f*x])^(7/2))/(f*(c - I*c*Tan[e + f*x])^(5/2)) + (((14*I)/15)*a^2*(a + I*a*Tan
[e + f*x])^(5/2))/(c*f*(c - I*c*Tan[e + f*x])^(3/2)) - (((14*I)/3)*a^3*(a + I*a*Tan[e + f*x])^(3/2))/(c^2*f*Sq
rt[c - I*c*Tan[e + f*x]]) - ((7*I)*a^4*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(c^3*f)

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (e+f x))^{9/2}}{(c-i c \tan (e+f x))^{5/2}} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{(a+i a x)^{7/2}}{(c-i c x)^{7/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}-\frac{\left (7 a^2\right ) \operatorname{Subst}\left (\int \frac{(a+i a x)^{5/2}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}+\frac{\left (7 a^3\right ) \operatorname{Subst}\left (\int \frac{(a+i a x)^{3/2}}{(c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{3 c f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}-\frac{\left (7 a^4\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x}}{\sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{c^2 f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}-\frac{\left (7 a^5\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x} \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{c^2 f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}+\frac{\left (14 i a^4\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 c-\frac{c x^2}{a}}} \, dx,x,\sqrt{a+i a \tan (e+f x)}\right )}{c^2 f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}+\frac{\left (14 i a^4\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{c x^2}{a}} \, dx,x,\frac{\sqrt{a+i a \tan (e+f x)}}{\sqrt{c-i c \tan (e+f x)}}\right )}{c^2 f}\\ &=\frac{14 i a^{9/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{5/2} f}-\frac{2 i a (a+i a \tan (e+f x))^{7/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{14 i a^2 (a+i a \tan (e+f x))^{5/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{14 i a^3 (a+i a \tan (e+f x))^{3/2}}{3 c^2 f \sqrt{c-i c \tan (e+f x)}}-\frac{7 i a^4 \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{c^3 f}\\ \end{align*}

Mathematica [A]  time = 16.3115, size = 390, normalized size = 1.54 \[ \frac{\cos ^4(e+f x) (a+i a \tan (e+f x))^{9/2} \left (\cos (2 f x) \left (-\frac{14 \sin (2 e)}{3 c^3}-\frac{14 i \cos (2 e)}{3 c^3}\right )+\cos (6 f x) \left (\frac{2 \sin (2 e)}{5 c^3}-\frac{2 i \cos (2 e)}{5 c^3}\right )+\sin (2 f x) \left (\frac{14 \cos (2 e)}{3 c^3}-\frac{14 i \sin (2 e)}{3 c^3}\right )+\sin (6 f x) \left (\frac{2 \cos (2 e)}{5 c^3}+\frac{2 i \sin (2 e)}{5 c^3}\right )-\frac{7 \sin (4 e)}{c^3}-\frac{7 i \cos (4 e)}{c^3}-\frac{14 \sin (4 f x)}{15 c^3}+\frac{14 i \cos (4 f x)}{15 c^3}\right ) \sqrt{\sec (e+f x) (c \cos (e+f x)-i c \sin (e+f x))}}{f (\cos (f x)+i \sin (f x))^4}+\frac{14 i \sqrt{e^{i f x}} e^{-i (5 e+f x)} \sqrt{\frac{e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} \tan ^{-1}\left (e^{i (e+f x)}\right ) (a+i a \tan (e+f x))^{9/2}}{c^2 f \sqrt{\frac{c}{1+e^{2 i (e+f x)}}} \sec ^{\frac{9}{2}}(e+f x) (\cos (f x)+i \sin (f x))^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(9/2)/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

((14*I)*Sqrt[E^(I*f*x)]*Sqrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x)))]*ArcTan[E^(I*(e + f*x))]*(a + I*a*Tan[e
 + f*x])^(9/2))/(c^2*E^(I*(5*e + f*x))*Sqrt[c/(1 + E^((2*I)*(e + f*x)))]*f*Sec[e + f*x]^(9/2)*(Cos[f*x] + I*Si
n[f*x])^(9/2)) + (Cos[e + f*x]^4*(((-7*I)*Cos[4*e])/c^3 + (((14*I)/15)*Cos[4*f*x])/c^3 + Cos[2*f*x]*((((-14*I)
/3)*Cos[2*e])/c^3 - (14*Sin[2*e])/(3*c^3)) + Cos[6*f*x]*((((-2*I)/5)*Cos[2*e])/c^3 + (2*Sin[2*e])/(5*c^3)) - (
7*Sin[4*e])/c^3 + ((14*Cos[2*e])/(3*c^3) - (((14*I)/3)*Sin[2*e])/c^3)*Sin[2*f*x] - (14*Sin[4*f*x])/(15*c^3) +
((2*Cos[2*e])/(5*c^3) + (((2*I)/5)*Sin[2*e])/c^3)*Sin[6*f*x])*Sqrt[Sec[e + f*x]*(c*Cos[e + f*x] - I*c*Sin[e +
f*x])]*(a + I*a*Tan[e + f*x])^(9/2))/(f*(Cos[f*x] + I*Sin[f*x])^4)

________________________________________________________________________________________

Maple [B]  time = 0.042, size = 460, normalized size = 1.8 \begin{align*} -{\frac{{a}^{4}}{15\,f{c}^{3} \left ( \tan \left ( fx+e \right ) +i \right ) ^{4}}\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) } \left ( 420\,i\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{3}ac+15\,i\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \left ( \tan \left ( fx+e \right ) \right ) ^{4}+105\,\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{4}ac-420\,i\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) \tan \left ( fx+e \right ) ac-658\,i\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \left ( \tan \left ( fx+e \right ) \right ) ^{2}-630\,\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{2}ac-292\, \left ( \tan \left ( fx+e \right ) \right ) ^{3}\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }+167\,i\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}+105\,ac\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) +548\,\tan \left ( fx+e \right ) \sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(5/2),x)

[Out]

-1/15/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)*a^4/c^3*(420*I*ln((a*c*tan(f*x+e)+(a*c*(1+tan(
f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)^3*a*c+15*I*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(
f*x+e)^4+105*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)^4*a*c-420*I*
ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)*a*c-658*I*(a*c*(1+tan(f*x
+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)^2-630*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^
(1/2))*tan(f*x+e)^2*a*c-292*tan(f*x+e)^3*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)+167*I*(a*c*(1+tan(f*x+e)^2))
^(1/2)*(a*c)^(1/2)+105*a*c*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))+548*tan(f
*x+e)*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(tan(f*x+e)+I)^4/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.9821, size = 1056, normalized size = 4.17 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

((3150*a^4*cos(2*f*x + 2*e) + 3150*I*a^4*sin(2*f*x + 2*e) + 3150*a^4)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e)
, cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + (3150*a^4*cos(2*f*x + 2*e) +
 3150*I*a^4*sin(2*f*x + 2*e) + 3150*a^4)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/
2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - (360*a^4*cos(2*f*x + 2*e) + 360*I*a^4*sin(2*f*x + 2*e) +
 360*a^4)*cos(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (1200*a^4*cos(2*f*x + 2*e) + 1200*I*a^4*sin(2
*f*x + 2*e) + 1200*a^4)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (5400*a^4*cos(2*f*x + 2*e) + 54
00*I*a^4*sin(2*f*x + 2*e) + 6300*a^4)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (-1575*I*a^4*cos(
2*f*x + 2*e) + 1575*a^4*sin(2*f*x + 2*e) - 1575*I*a^4)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))
)^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
 2*e))) + 1) - (1575*I*a^4*cos(2*f*x + 2*e) - 1575*a^4*sin(2*f*x + 2*e) + 1575*I*a^4)*log(cos(1/2*arctan2(sin(
2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan
2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - (360*I*a^4*cos(2*f*x + 2*e) - 360*a^4*sin(2*f*x + 2*e) + 360*I*a
^4)*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (-1200*I*a^4*cos(2*f*x + 2*e) + 1200*a^4*sin(2*f*x
+ 2*e) - 1200*I*a^4)*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (5400*I*a^4*cos(2*f*x + 2*e) - 540
0*a^4*sin(2*f*x + 2*e) + 6300*I*a^4)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*sqrt(c)/((-
450*I*c^3*cos(2*f*x + 2*e) + 450*c^3*sin(2*f*x + 2*e) - 450*I*c^3)*f)

________________________________________________________________________________________

Fricas [A]  time = 1.61739, size = 975, normalized size = 3.85 \begin{align*} \frac{105 \, \sqrt{\frac{a^{9}}{c^{5} f^{2}}} c^{3} f \log \left (\frac{2 \,{\left (4 \,{\left (a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} +{\left (2 i \, c^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} - 2 i \, c^{3} f\right )} \sqrt{\frac{a^{9}}{c^{5} f^{2}}}\right )}}{a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}}\right ) - 105 \, \sqrt{\frac{a^{9}}{c^{5} f^{2}}} c^{3} f \log \left (\frac{2 \,{\left (4 \,{\left (a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} +{\left (-2 i \, c^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + 2 i \, c^{3} f\right )} \sqrt{\frac{a^{9}}{c^{5} f^{2}}}\right )}}{a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}}\right ) +{\left (-24 i \, a^{4} e^{\left (6 i \, f x + 6 i \, e\right )} + 56 i \, a^{4} e^{\left (4 i \, f x + 4 i \, e\right )} - 280 i \, a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} - 420 i \, a^{4}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )}}{30 \, c^{3} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/30*(105*sqrt(a^9/(c^5*f^2))*c^3*f*log(2*(4*(a^4*e^(2*I*f*x + 2*I*e) + a^4)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))
*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + (2*I*c^3*f*e^(2*I*f*x + 2*I*e) - 2*I*c^3*f)*sqrt(a^9/(c^5
*f^2)))/(a^4*e^(2*I*f*x + 2*I*e) + a^4)) - 105*sqrt(a^9/(c^5*f^2))*c^3*f*log(2*(4*(a^4*e^(2*I*f*x + 2*I*e) + a
^4)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + (-2*I*c^3*f*e^(2*I*f
*x + 2*I*e) + 2*I*c^3*f)*sqrt(a^9/(c^5*f^2)))/(a^4*e^(2*I*f*x + 2*I*e) + a^4)) + (-24*I*a^4*e^(6*I*f*x + 6*I*e
) + 56*I*a^4*e^(4*I*f*x + 4*I*e) - 280*I*a^4*e^(2*I*f*x + 2*I*e) - 420*I*a^4)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1)
)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e))/(c^3*f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(9/2)/(c-I*c*tan(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{9}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(9/2)/(-I*c*tan(f*x + e) + c)^(5/2), x)